Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20889, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017141

RESUMO

Invasive wild pigs (Sus scrofa) are one of the most widespread, destructive vertebrate species globally. Their success can largely be attributed to their generalist diets, which are dominated by plant material but also include diverse animal taxa. Wild pigs are demonstrated nest predators of ground-nesting birds and reptiles, and likely pose a threat to amphibians given their extensive overlap in wetland use. DNA metabarcoding of fecal samples from 222 adult wild pigs culled monthly from 2017 to 2018 revealed a diverse diet dominated by plant material, with 166 plant genera from 56 families and 18 vertebrate species identified. Diet composition varied seasonally with availability for plants and was consistent between sexes. Amphibians were the most frequent vertebrate group consumed and represented the majority of vertebrate species detected, suggesting amphibians are potentially vulnerable to predation by wild pigs in our study region. Mammal, reptile, and bird species were also detected in pig diets, but infrequently. Our results highlight the need for research on the impacts of wild pigs on amphibians to better inform management and conservation of imperiled species.


Assuntos
Código de Barras de DNA Taxonômico , DNA , Humanos , Animais , Suínos , Anfíbios/genética , Aves , Sudeste dos Estados Unidos , Répteis , Plantas , Sus scrofa/genética
3.
Science ; 376(6590): eabh3767, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35420945

RESUMO

The productivity of ecosystems and their capacity to support life depends on access to reactive nitrogen (N). Over the past century, humans have more than doubled the global supply of reactive N through industrial and agricultural activities. However, long-term records demonstrate that N availability is declining in many regions of the world. Reactive N inputs are not evenly distributed, and global changes-including elevated atmospheric carbon dioxide (CO2) levels and rising temperatures-are affecting ecosystem N supply relative to demand. Declining N availability is constraining primary productivity, contributing to lower leaf N concentrations, and reducing the quality of herbivore diets in many ecosystems. We outline the current state of knowledge about declining N availability and propose actions aimed at characterizing and responding to this emerging challenge.


Assuntos
Ecossistema , Ciclo do Nitrogênio , Nitrogênio , Animais , Dióxido de Carbono/análise , Herbivoria , Humanos , Nitrogênio/análise , Nitrogênio/deficiência , Folhas de Planta/química , Folhas de Planta/metabolismo , Solo
4.
Nat Ecol Evol ; 6(1): 36-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949824

RESUMO

Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land-climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.


Assuntos
Ecossistema , Solo , Fenótipo , Folhas de Planta , Plantas
5.
Ecol Appl ; 31(6): e02389, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34142402

RESUMO

The rivers of Appalachia (United States) are among the most biologically diverse freshwater ecosystems in the temperate zone and are home to numerous endemic aquatic organisms. Throughout the Central Appalachian ecoregion, extensive surface coal mines generate alkaline mine drainage that raises the pH, salinity, and trace element concentrations in downstream waters. Previous regional assessments have found significant declines in stream macroinvertebrate and fish communities after draining these mined areas. Here, we expand these assessments with a more comprehensive evaluation across a broad range of organisms (bacteria, algae, macroinvertebrates, all eukaryotes, and fish) using high-throughput amplicon sequencing of environmental DNA (eDNA). We collected water samples from 93 streams in Central Appalachia (West Virginia, United States) spanning a gradient of mountaintop coal mining intensity and legacy to assess how this land use alters downstream water chemistry and affects aquatic biodiversity. For each group of organisms, we identified the sensitive and tolerant taxa along the gradient and calculated stream specific conductivity thresholds in which large synchronous declines in diversity were observed. Streams below mining operations had steep declines in diversity (-18 to -41%) and substantial shifts in community composition that were consistent across multiple taxonomic groups. Overall, large synchronous declines in bacterial, algal, and macroinvertebrate communities occurred even at low levels of mining impact at stream specific conductivity thresholds of 150-200 µS/cm that are substantially below the current U.S. Environmental Protection Agency aquatic life benchmark of 300 µS/cm for Central Appalachian streams. We show that extensive coal surface mining activities led to the extirpation of 40% of biodiversity from impacted rivers throughout the region and that current water quality criteria are likely not protective for many groups of aquatic organisms.


Assuntos
Minas de Carvão , Poluentes Químicos da Água , Animais , Biodiversidade , Ecossistema , Monitoramento Ambiental , Invertebrados , Mineração , Rios , Poluentes Químicos da Água/análise
6.
Sci Rep ; 11(1): 6829, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767267

RESUMO

North American plains bison (Bison bison) have been reintroduced across their former range, yet we know too little about their current diet to understand what drove their past migrations as well as observed continental-scale variation in weight gain and reproduction. In order to better understand the seasonal diets of bison at the continental scale, bison fecal material was collected monthly from April to September in 2019 across 45 sites throughout the conterminous United States. Fecal material was analyzed for dietary quality using near infrared spectroscopy and dietary composition with DNA metabarcoding. As observed in previous research, dietary quality peaked in June and was on average greatest for sites with cold, wet climates. Yet, in April, dietary quality was highest in warmer regions, likely reflecting earlier phenology of plants in southern than northern regions. Independent of climate and season, bison that consumed more warm-season grasses had lower dietary protein concentrations. Interpreting the relative abundance of sequences from different plant species as the relative intake of protein from those species, only 38% of bison protein intake came from grasses. An equal amount of dietary protein came from legumes (38%) and 22% from non-leguminous forbs. Seasonal shifts in bison diet were also clear, in part, following the phenology of functional groups. For example, cool-season grass protein intake was highest in May, while legume protein intake was highest in August. Comparing data taken in June and September 2018 in a previous study with corresponding data in 2019, on average, June [CP] was 20% higher in 2019 than 2018, while September [CP] did not differ between years. Dietary functional group composition was generally similar in amounts and relationships with climate between years, yet in September 2019, legumes contributed 20% more protein and warm-season grasses 14% less than in September 2018. In all, this research demonstrates that bison consistently rely on eudicots for protein with the functional group composition of their diet in some ways consistent across space and time, but also spatially and temporally variable. The early-season inversion of plant quality gradients would have been a strong driver of migratory behavior for large numbers of bison optimizing protein intake. As most bison currently experience protein deficiency, optimizing protein intake under current non-migratory conditions will require increasing the relative abundance of high-protein species such as N2-fixing species.


Assuntos
Ração Animal , Bison , Clima , Estações do Ano , Ração Animal/análise , Animais , Qualidade dos Alimentos , América do Norte , Estados Unidos
7.
Glob Chang Biol ; 26(10): 5353-5355, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32530557

RESUMO

This is a commentary on Brookshire et al. 26, 5404-5413 For the Northern Great Plains, Brookshire, Stoy, Currey, and Finney (Global Change Biology, 2020) analyze satellite-based reconstructions of greenness and foliar nutrition and isotopic composition from herbarium samples. Their results of greater productivity coupled with reduced N availability are part of an inflection in our understanding of the global N cycle as much of the terrestrial biosphere appears to be experiencing reduced N availability.


Assuntos
Ecossistema , Nitrogênio
10.
Evolution ; 73(5): 927-946, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30874302

RESUMO

Grass leaf shape is a strong indicator of their habitat with linear leaves predominating in open areas and ovate leaves distinguishing forest-associated grasses. This pattern among extant species suggests that ancestral shifts between forest and open habitats may have coincided with changes in leaf shape or size. We tested relationships between habitat, climate, photosynthetic pathway, and leaf shape and size in a phylogenetic framework to evaluate drivers of leaf shape and size variation over the evolutionary history of the family. We also estimated the ancestral habitat of Poaceae and tested whether forest margins served as transitional zones for shifts between forests and grasslands. We found that grass leaf shape is converging toward different shape optima in the forest understory, forest margins, and open habitats. Leaf size also varies with habitat. Grasses have smaller leaves in open and drier areas, and in areas with high solar irradiance. Direct transitions between linear and ovate leaves are rare as are direct shifts between forest and open habitats. The most likely ancestral habitat of the family was the forest understory and forest margins along with an intermediate leaf shape served as important transitional habitat and morphology, respectively, for subsequent shifts across forest-grassland biome boundaries.


Assuntos
Ecossistema , Folhas de Planta/fisiologia , Poaceae/genética , Poaceae/fisiologia , Teorema de Bayes , Biodiversidade , Evolução Biológica , China , Clima , Florestas , Fósseis , Pradaria , Funções Verossimilhança , Fotossíntese , Filogenia , Fatores de Tempo
11.
Nat Ecol Evol ; 2(11): 1735-1744, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30349095

RESUMO

Human societies depend on an Earth system that operates within a constrained range of nutrient availability, yet the recent trajectory of terrestrial nitrogen (N) availability is uncertain. Examining patterns of foliar N concentrations and isotope ratios (δ15N) from more than 43,000 samples acquired over 37 years, here we show that foliar N concentration declined by 9% and foliar δ15N declined by 0.6-1.6‰. Examining patterns across different climate spaces, foliar δ15N declined across the entire range of mean annual temperature and mean annual precipitation tested. These results suggest declines in N supply relative to plant demand at the global scale. In all, there are now multiple lines of evidence of declining N availability in many unfertilized terrestrial ecosystems, including declines in δ15N of tree rings and leaves from herbarium samples over the past 75-150 years. These patterns are consistent with the proposed consequences of elevated atmospheric carbon dioxide and longer growing seasons. These declines will limit future terrestrial carbon uptake and increase nutritional stress for herbivores.


Assuntos
Ecossistema , Eutrofização , Nitrogênio/metabolismo , Plantas/metabolismo , Isótopos de Nitrogênio/análise
12.
Nat Ecol Evol ; 2(10): 1579-1587, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30150740

RESUMO

A substantial body of evidence has demonstrated that biodiversity stabilizes ecosystem functioning over time in grassland ecosystems. However, the relative importance of different facets of biodiversity underlying the diversity-stability relationship remains unclear. Here we use data from 39 grassland biodiversity experiments and structural equation modelling to investigate the roles of species richness, phylogenetic diversity and both the diversity and community-weighted mean of functional traits representing the 'fast-slow' leaf economics spectrum in driving the diversity-stability relationship. We found that high species richness and phylogenetic diversity stabilize biomass production via enhanced asynchrony in the performance of co-occurring species. Contrary to expectations, low phylogenetic diversity enhances ecosystem stability directly, albeit weakly. While the diversity of fast-slow functional traits has a weak effect on ecosystem stability, communities dominated by slow species enhance ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Our in-depth, integrative assessment of factors influencing the diversity-stability relationship demonstrates a more multicausal relationship than has been previously acknowledged.


Assuntos
Biodiversidade , Embriófitas , Pradaria , Características de História de Vida , Biomassa , Modelos Biológicos , Filogenia
13.
PeerJ ; 6: e4299, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29416954

RESUMO

The systematics of grasses has advanced through applications of plastome phylogenomics, although studies have been largely limited to subfamilies or other subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250 complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae. Plastome sequences were determined from high throughput sequencing libraries and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal was characterized in 14 partitions, including (1) complete plastomes; (2) protein coding regions; (3) noncoding regions; and (4) three loci commonly used in single and multi-gene studies of grasses. Each of the four main partitions was further refined, alternatively including or excluding positively selected codons and also the gaps introduced by the alignment. All 76 protein coding plastome loci were found to be predominantly under purifying selection, but specific codons were found to be under positive selection in 65 loci. The loci that have been widely used in multi-gene phylogenetic studies had among the highest proportions of positively selected codons, suggesting caution in the interpretation of these earlier results. Plastome phylogenomic analyses confirmed the backbone topology for Poaceae with maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309 resolved were maximally supported in all trees. Analyses of newly sequenced plastomes were in agreement with current classifications. Five of seven partitions in which alignment gaps were removed retrieved Panicoideae as sister to the remaining PACMAD subfamilies. Alternative topologies were recovered in trees from partitions that included alignment gaps. This suggests that ambiguities in aligning these uncertain regions might introduce a false signal. Resolution of these and other critical branch points in the phylogeny of Poaceae will help to better understand the selective forces that drove the radiation of the BOP and PACMAD clades comprising more than 99.9% of grass diversity.

14.
AoB Plants ; 10(1): ply006, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29484152

RESUMO

Leaf Economics Spectrum (LES) trait variation underpins multiple agroecological processes and many prominent crop yield models. While there are numerous independent studies assessing trait variation in crops, to date there have been no comprehensive assessments of intraspecific trait variation (ITV) in LES traits for wheat and maize: the world's most widespread crops. Using trait databases and peer-reviewed literature, we compiled over 700 records of specific leaf area (SLA), maximum photosynthetic rates (Amax) and leaf nitrogen (N) concentrations, for wheat and maize. We evaluated intraspecific LES trait variation, and intraspecific trait-environment relationships. While wheat and maize occupy the upper 90th percentile of LES trait values observed across a global species pool, ITV ranged widely across the LES in wheat and maize. Fertilization treatments had strong impacts on leaf N, while plant developmental stage (here standardized as the number of days since planting) had strong impacts on Amax; days since planting, N fertilization and irrigation all influenced SLA. When controlling for these factors, intraspecific responses to temperature and precipitation explained 39.4 and 43.7 % of the variation in Amax and SLA, respectively, but only 5.4 % of the variation in leaf N. Despite a long history of domestication in these species, ITV in wheat and maize among and within cultivars remains large. Intraspecific trait variation is a critical consideration to refine regional to global models of agroecosystem structure, function and food security. Considerable opportunities and benefits exist for consolidating a crop trait database for a wider range of domesticated plant species.

15.
Proc Natl Acad Sci U S A ; 114(51): E10937-E10946, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29196525

RESUMO

Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.


Assuntos
Ecossistema , Plantas , Característica Quantitativa Herdável , Meio Ambiente , Geografia , Modelos Estatísticos , Dispersão Vegetal , Análise Espacial
16.
PLoS One ; 12(10): e0186290, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29049324

RESUMO

The study of the microbial communities has gained traction in recent years with the advent of next-generation sequencing with, or without, PCR-based amplification of the 16S ribosomal RNA region. Such studies have been applied to topics as diverse as human health and environmental ecology. Fewer studies have investigated taxa outside of bacteria, however. We present here data demonstrating the utility of studying taxa outside of bacteria including algae, diatoms, archaea and fungi. Here, we show how location along the Cuyahoga River as well as a transient rainfall event heavily influence the microbial composition. Our data reveal how individual OTUs vary between samples and how the patterns of OTU abundance can accurately predict sampling location. The clustering of samples reveals that these taxa are all sensitive to water conditions in unique ways and demonstrate that, for our dataset, algae was most distinctive between sample groups, surpassing bacteria. Diversity between sampling sites could allow studies investigating pollution or water quality to identify marker OTUs or patterns of OTU abundance as indicators to assess environmental conditions or the impact of human activity. We also directly compare data derived from primers amplifying distinct taxa and show that taxa besides bacteria are excellent indicators of water condition.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Rios , Microbiologia da Água , Archaea/genética , Bactérias/genética , Fungos/genética , Análise de Componente Principal , RNA Ribossômico 16S/genética
17.
Sci Rep ; 7(1): 7759, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798483

RESUMO

Variation across climate gradients in the isotopic composition of nitrogen (N) and carbon (C) in foliar tissues has the potential to reveal ecological processes related to N and water availability. However, it has been a challenge to separate spatial patterns related to direct effects of climate from effects that manifest indirectly through species turnover across climate gradients. Here we compare variation along environmental gradients in foliar N isotope (δ15N) and C isotopic discrimination (Δ13C) measured in 755 specimens of a single widely distributed tree species, Populus balsamifera, with variation represented in global databases of foliar isotopes. After accounting for mycorrhizal association, sample size, and climatic range, foliar δ15N in P. balsamifera was more weakly related to mean annual precipitation and foliar N concentration than when measured across species, yet exhibited a stronger negative effect of mean annual temperature. Similarly, the effect of precipitation and elevation on Δ13C were stronger in a global data base of foliar Δ13C samples than observed in P. balsamifera. These results suggest that processes influencing foliar δ15N and Δ13C in P. balsamifera are partially normalized across its climatic range by the habitat it occupies or by the physiology of the species itself.


Assuntos
Variação Biológica da População , Isótopos de Carbono/análise , Clima , Isótopos de Nitrogênio/análise , Folhas de Planta/química , Populus/metabolismo , Adaptação Fisiológica , Ecossistema
18.
Nat Plants ; 2: 16133, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27618399

RESUMO

There is wide agreement that anthropogenic climate warming has influenced the phenology of forests during the late twentieth and early twenty-first centuries(1,2). Longer growing seasons can lead to increased photosynthesis and productivity(3), which would represent a negative feedback to rising CO2 and consequently warming(4,5). Alternatively, increased demand for soil resources because of a longer photosynthetically active period in conjunction with other global change factors might exacerbate resource limitation(6,7), restricting forest productivity response to a longer growing season(8,9). In this case, increased springtime productivity has the potential to increase plant nitrogen limitation by increasing plant demand for nitrogen more than nitrogen supplies, or increasing early-season ecosystem nitrogen losses(10,11). Here we show that for 222 trees representing three species in eastern North America earlier spring phenology during the past 30 years has caused declines in nitrogen availability to trees by increasing demand for nitrogen relative to supply. The observed decline in nitrogen availability is not associated with reduced wood production, suggesting that other environmental changes such as increased atmospheric CO2 and water availability are likely to have overwhelmed reduced nitrogen availability. Given current trajectories of environmental changes, nitrogen limitation is likely to continue to increase for these forests, possibly further limiting carbon sequestration potential.


Assuntos
Mudança Climática , Florestas , Nitrogênio/metabolismo , Árvores/metabolismo , Sequestro de Carbono , Maryland , Estações do Ano , Sudeste dos Estados Unidos , Estados Unidos
19.
PLoS One ; 11(8): e0161511, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27552104

RESUMO

In North America, it has been shown that cattle in warmer, drier grasslands have lower quality diets than those cattle grazing cooler, wetter grasslands, which suggests warming will increase nutritional stress and reduce weight gain. Yet, little is known about how the plant species that comprise cattle diets change across these gradients and whether these shifts in dietary quality coincide with shifts in dietary composition, i.e. the relative abundance of different plant species consumed by cattle. To quantify geographic patterns in dietary composition, we analyzed the dietary composition and dietary quality of unsupplemented cattle from 289 sites across the central US by sequence-based analyses of plant DNA isolated from cattle fecal samples. Overall, assuming that the percentage of reads for a species in a sample corresponds to the percentage of protein derived from the species, only 45% of the protein intake for cattle was derived from grasses. Within the Great Plains, northern cattle relied more on grasses than southern cattle, which derived a greater proportion of their protein from herbaceous and woody eudicots. Eastern cattle were also more likely to consume a unique assemblage of plant species than western cattle. High dietary protein was not strongly tied to consumption of any specific plant species, which suggests that efforts to promote individual plant species may not easily remedy protein deficiencies. A few plant species were consistently associated with lower quality diets. For example, the diets of cattle with high amounts of Elymus or Hesperostipa were more likely to have lower crude protein concentrations than diets with less of these grasses. Overall, our analyses suggest that climatic warming will increase the reliance of cattle on eudicots as protein concentrations of grasses decline. Monitoring cattle diet with this DNA-based sequencing approach can be an effective tool for quantifying cattle diet to better increase animal performance and guide mitigation strategies to changing climates.


Assuntos
Ração Animal , Clima , Comportamento Alimentar , Aquecimento Global , Animais , Bovinos
20.
BMC Plant Biol ; 16(1): 140, 2016 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-27316745

RESUMO

BACKGROUND: Panicoideae are the second largest subfamily in Poaceae (grass family), with 212 genera and approximately 3316 species. Previous studies have begun to reveal relationships within the subfamily, but largely lack resolution and/or robust support for certain tribal and subtribal groups. This study aims to resolve these relationships, as well as characterize a putative mitochondrial insert in one linage. RESULTS: 35 newly sequenced Panicoideae plastomes were combined in a phylogenomic study with 37 other species: 15 Panicoideae and 22 from outgroups. A robust Panicoideae topology largely congruent with previous studies was obtained, but with some incongruences with previously reported subtribal relationships. A mitochondrial DNA (mtDNA) to plastid DNA (ptDNA) transfer was discovered in the Paspalum lineage. CONCLUSIONS: The phylogenomic analysis returned a topology that largely supports previous studies. Five previously recognized subtribes appear on the topology to be non-monophyletic. Additionally, evidence for mtDNA to ptDNA transfer was identified in both Paspalum fimbriatum and P. dilatatum, and suggests a single rare event that took place in a common progenitor. Finally, the framework from this study can guide larger whole plastome sampling to discern the relationships in Cyperochloeae, Steyermarkochloeae, Gynerieae, and other incertae sedis taxa that are weakly supported or unresolved.


Assuntos
Evolução Molecular , Plastídeos/genética , Poaceae/genética , DNA Mitocondrial/genética , DNA de Plantas/genética , Filogenia , Poaceae/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...